Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499226

RESUMEN

Cadherin Related Family Member 3 (CDHR3) is the identified and required cellular receptor for all virus isolates in the rhinovirus-C species (RV-C). Cryo-EM determinations recently resolved the atomic structure of RV-C15a, and subsequently, a complex of this virus bound to CDHR3 extracellular domain 1 (EC1), the N-terminal portion of this receptor responsible for virus interactions. The EC1 binds to a hypervariable sequence footprint on the virus surface, near the 3-fold axis of icosahedral symmetry. The key contacts involve discontinuous residues from 3 viral proteins, VP1, VP2 and VP3. That single cryo-EM EC1 structure, however, could not resolve whether the virus-receptor interface was structurally adaptable to accommodate multiple virus sequences. We now report the solution NMR determination of CDHR3 EC1, showing that this protein, in fact, is mostly inflexible, particularly in the virus-binding face. The new, higher resolution dataset identifies 3 cis-Pro residues in important loop regions, where they can influence both rigidity and overall protein conformation. The data also provide clarification about the residues involved in essential calcium ion binding, and a potential CDHR3 surface groove feature that may be involved in native protein interactions with cellular partners.


Asunto(s)
Cadherinas/química , Enterovirus/química , Proteínas de la Membrana/química , Proteínas Relacionadas con las Cadherinas , Enterovirus/clasificación , Infecciones por Enterovirus/virología , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Virales/química , Acoplamiento Viral
2.
J Struct Biol ; 210(2): 107491, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151725

RESUMEN

NFU1 is a late-acting factor in the biogenesis of human mitochondrial iron-sulfur proteins. Mutations in NFU1 are associated with genetic diseases such as multiple mitochondrial dysfunctions syndrome 1 (MMDS1) that involve defects in mitochondrial [4Fe-4S] proteins. We present results from NMR spectroscopy, small angle X-ray scattering, size exclusion chromatography, and isothermal titration calorimetry showing that the structured conformer of human ISCU binds human NFU1. The dissociation constant determined by ITC is Kd = 1.1 ± 0.2 µM. NMR and SAXS studies led to a structural model for the complex in which the cluster binding region of ISCU interacts with two α-helices in the C-terminal domain of NFU1. In vitro experiments demonstrate that ISCU[4Fe-4S] transfers its Fe-S cluster to apo-NFU1, in the absence of a chaperone, leading to the assembly of holo-NFU1. By contrast, the cluster of ISCU[2Fe-2S] remains bound to ISCU in the presence of apo-NFU1.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Hierro-Azufre/metabolismo , Compuestos de Sulfonilurea/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño
3.
Protein Sci ; 28(6): 1115-1126, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31004454

RESUMEN

We report the recombinant preparation from Escherichia coli cells of samples of two closely related, small, secreted cysteine-rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well-resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, and in vivo root growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N-terminal His-tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with 15 N and 13 C for NMR analysis and obtained near complete 1 H, 13 C, and 15 N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Secuencia de Aminoácidos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Alineación de Secuencia , Soluciones
4.
Structure ; 26(8): 1127-1136.e4, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29983374

RESUMEN

Cysteine desulfurase plays a central role in mitochondrial iron-sulfur cluster biogenesis by generating sulfur through the conversion of L-cysteine to L-alanine and by serving as the platform for assembling other components of the biosynthetic machinery, including ISCU, frataxin, and ferredoxin. The human mitochondrial cysteine desulfurase complex consists of two copies each of NFS1, ISD11, and acyl carrier protein. We describe results from chemical crosslinking coupled with tandem mass spectrometry and small-angle X-ray scattering studies that are consistent with a closed NFS1 dimer rather than an open one for both the cysteine desulfurase-ISCU and cysteine desulfurase-ISCU-frataxin complexes. We present a structural model for the cysteine desulfurase-ISCU-frataxin complex derived from chemical crosslinking restraints in conjunction with the recent crystal structure of the cysteine desulfurase-ISCU-zinc complex and distance constraints from nuclear magnetic resonance.


Asunto(s)
Proteína Transportadora de Acilo/química , Liasas de Carbono-Azufre/química , Proteínas de Unión a Hierro/química , Proteínas Reguladoras del Hierro/química , Proteínas Hierro-Azufre/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Sitios de Unión , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Clonación Molecular , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Cinética , Maleimidas/química , Mitocondrias/química , Mitocondrias/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Difracción de Rayos X , Frataxina
5.
J Inorg Biochem ; 183: 107-116, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29576242

RESUMEN

Frataxin (FXN) is involved in mitochondrial iron­sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron­sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe2+ but not Fe3+. While FXN (with or without bound Fe2+) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1]2:[ISD11]2:[Acp]2), abbreviated as (NIA)2, where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA)2 weakly in the absence of ISCU but more strongly in its presence. Fe2+-FXN binds to the (NIA)2-ISCU2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe2+ is released from FXN as consistent with Fe2+-FXN being the proximal source of iron for Fe-S cluster assembly.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Calorimetría , Hierro/química , Espectroscopía de Resonancia Magnética , Unión Proteica , Azufre/química , Frataxina
6.
Biochemistry ; 57(9): 1491-1500, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406711

RESUMEN

Whereas iron-sulfur (Fe-S) cluster assembly on the wild-type scaffold protein ISCU, as catalyzed by the human cysteine desulfurase complex (NIA)2, exhibits a requirement for frataxin (FXN), in yeast, ISCU variant M108I has been shown to bypass the FXN requirement. Wild-type ISCU populates two interconverting conformational states: one structured and one dynamically disordered. We show here that variants ISCU(M108I) and ISCU(D39V) of human ISCU populate only the structured state. We have compared the properties of ISCU, ISCU(M108I), and ISCU(D39V), with and without FXN, in both the cysteine desulfurase step of Fe-S cluster assembly and the overall Fe-S cluster assembly reaction catalyzed by (NIA)2. In the cysteine desulfurase step with dithiothreitol (DTT) as the reductant, FXN was found to stimulate cysteine desulfurase activity with both the wild-type and structured variants, although the effect was less prominent with ISCU(D39V) than with the wild-type or ISCU(M108I). In overall Fe-S cluster assembly, frataxin was found to stimulate cluster assembly with both the wild-type and structured variants when the reductant was DTT; however, with the physiological reductant, reduced ferredoxin 2 (rdFDX2), FXN stimulated the reaction with wild-type ISCU but not with either ISCU(M108I) or ISCU(D39V). Nuclear magnetic resonance titration experiments revealed that wild-type ISCU, FXN, and rdFDX2 all bind to (NIA)2. However, when ISCU was replaced by the fully structured variant ISCU(M108I), the addition of rdFDX2 to the [NIA-ISCU(M108I)-FXN]2 complex led to the release of FXN. Thus, the displacement of FXN by rdFDX2 explains the failure of FXN to stimulate Fe-S cluster assembly on ISCU(M108I).


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Ferredoxinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Proteínas Hierro-Azufre/genética , Ratones , Modelos Moleculares , Frataxina
7.
ACS Chem Biol ; 12(4): 918-921, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28233492

RESUMEN

Mitochondrial cysteine desulfurase is an essential component of the machinery for iron-sulfur cluster biosynthesis. It has been known that human cysteine desulfurase that is catalytically active in vitro can be prepared by overexpressing in Escherichia coli cells two protein components of this system, the cysteine desulfurase protein NFS1 and the auxiliary protein ISD11. We report here that this active preparation contains, in addition, the holo-form of E. coli acyl carrier protein (Acp). We have determined the stoichiometry of the complex to be [Acp]2:[ISD11]2:[NFS1]2. Acyl carrier protein recently has been found to be an essential component of the iron-sulfur protein biosynthesis machinery in mitochondria; thus, because of the activity of [Acp]2:[ISD11]2:[NFS1]2 in supporting iron-sulfur cluster assembly in vitro, it appears that E. coli Acp can substitute for its human homologue.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Liasas de Carbono-Azufre/metabolismo , Escherichia coli/genética , Proteínas Reguladoras del Hierro/metabolismo , Mitocondrias/enzimología , Liasas de Carbono-Azufre/genética , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Proteínas Reguladoras del Hierro/genética , Mitocondrias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Espectrometría de Masas en Tándem , Difracción de Rayos X
8.
Biochemistry ; 56(3): 487-499, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28001042

RESUMEN

Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.


Asunto(s)
Liasas de Carbono-Azufre/química , Ferredoxinas/química , Hierro/química , Azufre/química , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Secuencia de Aminoácidos , Animales , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Cisteína , Electrones , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Regulación de la Expresión Génica , Humanos , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Modelos Moleculares , Oxidación-Reducción , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Azufre/metabolismo , Frataxina
9.
Structure ; 24(12): 2080-2091, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27818104

RESUMEN

Human mitochondrial NFU1 functions in the maturation of iron-sulfur proteins, and NFU1 deficiency is associated with a fatal mitochondrial disease. We determined three-dimensional structures of the N- and C-terminal domains of human NFU1 by nuclear magnetic resonance spectroscopy and used these structures along with small-angle X-ray scattering (SAXS) data to derive structural models for full-length monomeric apo-NFU1, dimeric apo-NFU1 (an artifact of intermolecular disulfide bond formation), and holo-NFUI (the [4Fe-4S] cluster-containing form of the protein). Apo-NFU1 contains two cysteine residues in its C-terminal domain, and two apo-NFU1 subunits coordinate one [4Fe-4S] cluster to form a cluster-linked dimer. Holo-NFU1 consists of a complex of three of these dimers as shown by molecular weight estimates from SAXS and size-exclusion chromatography. The SAXS-derived structural model indicates that one N-terminal region from each of the three dimers forms a tripartite interface. The activity of the holo-NFU1 preparation was verified by demonstrating its ability to activate apo-aconitase.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Azufre/metabolismo , Humanos , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Biophys J ; 109(5): 1019-25, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26331259

RESUMEN

IscU, the scaffold protein for iron-sulfur (Fe-S) cluster biosynthesis in Escherichia coli, traverses a complex energy landscape during Fe-S cluster synthesis and transfer. Our previous studies showed that IscU populates two interconverting conformational states: one structured (S) and one largely disordered (D). Both states appear to be functionally important because proteins involved in the assembly or transfer of Fe-S clusters have been shown to interact preferentially with either the S or D state of IscU. To characterize the complex structure-energy landscape of IscU, we employed NMR spectroscopy, small-angle x-ray scattering (SAXS), and differential scanning calorimetry. Results obtained for IscU at pH 8.0 show that its S state is maximally populated at 25°C and that heating or cooling converts the protein toward the D state. Results from NMR and DSC indicate that both the heat- and cold-induced S→D transitions are cooperative and two-state. Low-resolution structural information from NMR and SAXS suggests that the structures of the cold-induced and heat-induced D states are similar. Both states exhibit similar (1)H-(15)N HSQC spectra and the same pattern of peptidyl-prolyl peptide bond configurations by NMR, and both appear to be similarly expanded compared with the S state based on analysis of SAXS data. Whereas in other proteins the cold-denatured states have been found to be slightly more compact than the heat-denatured states, these two states occupy similar volumes in IscU.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Frío , Proteínas de Escherichia coli/química , Calor , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica , Azufre/metabolismo , Termodinámica
11.
J Struct Funct Genomics ; 16(2): 67-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25854603

RESUMEN

Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.


Asunto(s)
Sistema Libre de Células , Biosíntesis de Proteínas/genética , Proteínas/genética , Clonación Molecular , Escherichia coli/genética , Eucariontes/genética , Expresión Génica , Vectores Genéticos , Células Germinativas , Proteínas/aislamiento & purificación , Triticum/genética
12.
Biochemistry ; 53(46): 7148-59, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25372495

RESUMEN

Proteins from the isc operon of Escherichia coli constitute the machinery used to synthesize iron-sulfur (Fe-S) clusters for delivery to recipient apoproteins. Efficient and rapid [2Fe-2S] cluster transfer from the holo-scaffold protein IscU depends on ATP hydrolysis in the nucleotide-binding domain (NBD) of HscA, a specialized Hsp70-type molecular chaperone with low intrinsic ATPase activity (0.02 min(-1) at 25 °C, henceforth reported in units of min(-1)). HscB, an Hsp40-type cochaperone, binds to HscA and stimulates ATP hydrolysis to promote cluster transfer, yet while the interactions between HscA and HscB have been investigated, the role of HscA's interdomain linker in modulating ATPase activity has not been explored. To address this issue, we created three variants of the 40 kDa NBD of HscA: NBD alone (HscA386), NBD with a partial linker (HscA389), and NBD with the full linker (HscA395). We found that the rate of ATP hydrolysis of HscA395 (0.45 min(-1)) is nearly 15-fold higher than that of HscA386 (0.035 min(-1)), although their apparent affinities for ATP are equivalent. HscA395, which contains the full covalently linked linker peptide, exhibited intrinsic tryptophan fluorescence emission and basal thermostability that were higher than those of HscA386. Furthermore, HscA395 displayed narrower (1)H(N) line widths in its two-dimensional (1)H-(15)N TROSY-HSQC spectrum in comparison to HscA386, indicating that the peptide in the cis configuration binds to and stabilizes the structure of the NBD. The addition to HscA386 of a synthetic peptide with a sequence identical to that of the interdomain linker (L(387)LLDVIPLS(395)) stimulated its ATPase activity and induced widespread NMR chemical shift perturbations indicative of a binding interaction in the trans configuration.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Hidrólisis , Modelos Moleculares , Estabilidad Proteica , Estructura Terciaria de Proteína
13.
J Am Chem Soc ; 136(33): 11586-9, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25080945

RESUMEN

The structural mechanism by which Hsp70-type chaperones interact with Hsp40-type co-chaperones has been of great interest, yet still remains a matter of debate. Here, we used solution NMR spectroscopy to investigate the ATP-/ADP-dependent interactions between Escherichia coli HscA and HscB, the specialized Hsp70/Hsp40 molecular chaperones that mediate iron-sulfur cluster transfer. We observed that NMR signals assigned to amino acid residues in the J-domain and its "HPD" motif of HscB broadened severely upon the addition of ATP-bound HscA, but these signals were not similarly broadened by ADP-bound HscA or the isolated nucleotide binding domain of HscA complexed with either ATP or ADP. An HscB variant with an altered HPD motif, HscB(H32A,P33A,D34A), failed to manifest WT-like NMR signal perturbations and also abolished WT-like stimulation of ATP hydrolysis by HscA. In addition, residues 153-171 in the C-terminal region of HscB exhibited NMR signal perturbations upon interaction with HscA, alone or complexed with ADP or ATP. These results demonstrate that the HPD motif in the J-domain of HscB directly interacts with ATP-bound HscA and suggest that a second, less nucleotide-dependent binding site for HscA resides in the C-terminal region of HscB.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Nucleótidos/química , Nucleótidos/metabolismo , Adenosina Difosfato/química , Adenosina Trifosfato/química , Escherichia coli/química , Proteínas del Choque Térmico HSP40/química , Proteínas HSP70 de Choque Térmico/química , Resonancia Magnética Nuclear Biomolecular
14.
PLoS One ; 9(6): e97198, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24937088

RESUMEN

Human rhinovirus strains differ greatly in their virulence, and this has been correlated with the differing substrate specificity of the respective 2A protease (2Apro). Rhinoviruses use their 2Apro to cleave a spectrum of cellular proteins important to virus replication and anti-host activities. These enzymes share a chymotrypsin-like fold stabilized by a tetra-coordinated zinc ion. The catalytic triad consists of conserved Cys (C105), His (H34), and Asp (D18) residues. We used a semi-automated NMR protocol developed at NMRFAM to determine the solution structure of 2Apro (C105A variant) from an isolate of the clinically important rhinovirus C species (RV-C). The backbone of C2 2Apro superimposed closely (1.41-1.81 Å rmsd) with those of orthologs from RV-A2, coxsackie B4 (CB4), and enterovirus 71 (EV71) having sequence identities between 40% and 60%. Comparison of the structures suggest that the differential functional properties of C2 2Apro stem from its unique surface charge, high proportion of surface aromatics, and sequence surrounding the di-tyrosine flap.


Asunto(s)
Cisteína Endopeptidasas/química , Rhinovirus/enzimología , Proteínas Virales/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
15.
J Am Chem Soc ; 136(22): 7933-42, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24810328

RESUMEN

The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe-S cluster biogenesis. We have used a combination of NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe(2+) from added ferrous ammonium sulfate binds IscX much more avidly than does Fe(3+) from added ferric ammonium citrate and that Fe(2+) strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU-IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe-S cluster assembly in which IscX serves both as a donor of Fe(2+) and as a regulator of cysteine desulfurase activity.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Hierro/química , Azufre/química , Sitios de Unión , Liasas de Carbono-Azufre/química , Reactivos de Enlaces Cruzados , Escherichia coli/metabolismo , Hierro/metabolismo , Proteínas de Unión a Hierro/química , Azufre/metabolismo , Frataxina
16.
J Biol Chem ; 288(40): 28755-70, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23940031

RESUMEN

Human ISCU is the scaffold protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis and transfer. NMR spectra have revealed that ISCU populates two conformational states; that is, a more structured state (S) and a partially disordered state (D). We identified two single amino acid substitutions (D39V and N90A) that stabilize the S-state and two (D39A and H105A) that stabilize the D-state. We isolated the two constituent proteins of the human cysteine desulfurase complex (NFS1 and ISD11) separately and used NMR spectroscopy to investigate their interaction with ISCU. We found that ISD11 does not interact directly with ISCU. By contrast, NFS1 binds preferentially to the D-state of ISCU as does the NFS1-ISD11 complex. An in vitro Fe-S cluster assembly assay showed that [2Fe-2S] and [4Fe-4S] clusters are assembled on ISCU when catalyzed by NFS1 alone and at a higher rate when catalyzed by the NFS1-ISD11 complex. The DnaK-type chaperone (mtHSP70) and DnaJ-type co-chaperone (HSC20) are involved in the transfer of clusters bound to ISCU to acceptor proteins in an ATP-dependent reaction. We found that the ATPase activity of mtHSP70 is accelerated by HSC20 and further accelerated by HSC20 plus ISCU. NMR studies have shown that mtHSP70 binds preferentially to the D-state of ISCU and that HSC20 binds preferentially to the S-state of ISCU.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Bioensayo , Cromatografía en Gel , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Humanos , Proteínas Reguladoras del Hierro/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Alineación de Secuencia
17.
J Am Chem Soc ; 135(22): 8117-20, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23682711

RESUMEN

Escherichia coli [2Fe-2S]-ferredoxin (Fdx) is encoded by the isc operon along with other proteins involved in the 'house-keeping' mechanism of iron-sulfur cluster biogenesis. Although it has been proposed that Fdx supplies electrons to reduce sulfane sulfur (S(0)) produced by the cysteine desulfurase (IscS) to sulfide (S(2-)) as required for the assembly of Fe-S clusters on the scaffold protein (IscU), direct experimental evidence for the role of Fdx has been lacking. Here, we show that Fdx (in either oxidation state) interacts directly with IscS. The interaction face on Fdx was found to include residues close to its Fe-S cluster. In addition, C328 of IscS, the residue known to pick up sulfur from the active site of IscS and deliver it to the Cys residues of IscU, formed a disulfide bridge with Fdx in the presence of an oxidizing agent. Electrons from reduced Fdx were transferred to IscS only in the presence of l-cysteine, but not to the C328S variant. We found that Fdx, IscU, and CyaY (the bacterial frataxin) compete for overlapping binding sites on IscS. This mutual exclusion explains the mechanism by which CyaY inhibits Fe-S cluster biogenesis. These results (1) show that reduced Fdx supplies one electron to the IscS complex as S(0) is produced by the enzymatic conversion of Cys to Ala and (2) explain the role of Fdx as a member of the isc operon.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Electrones , Ferredoxinas/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Sitios de Unión , Liasas de Carbono-Azufre/química , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/metabolismo , Ferredoxinas/química , Hierro/química , Proteínas de Unión a Hierro/química , Modelos Moleculares , Azufre/química , Frataxina
18.
FEBS Lett ; 587(8): 1172-9, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23333622

RESUMEN

IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and delivery, populates a complex energy landscape. IscU exists as two slowly interconverting species: one (S) is largely structured with all four peptidyl-prolyl bonds trans; the other (D) is partly disordered but contains an ordered domain that stabilizes two cis peptidyl-prolyl peptide bonds. At pH 8.0, the S-state is maximally populated at 25 °C, but its population decreases at higher or lower temperatures or at lower pH. The D-state binds preferentially to the cysteine desulfurase (IscS), which generates and transfers sulfur to IscU cysteine residues to form persulfides. The S-state is stabilized by Fe-S cluster binding and interacts preferentially with the DnaJ-type co-chaperone (HscB), which targets the holo-IscU:HscB complex to the DnaK-type chaperone (HscA) in its ATP-bound from. HscA is involved in delivery of Fe-S clusters to acceptor proteins by a mechanism dependent on ATP hydrolysis. Upon conversion of ATP to ADP, HscA binds the D-state of IscU ensuring release of the cluster and HscB. These findings have led to a more complete model for cluster biosynthesis and delivery.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas Hierro-Azufre/química , Conformación Proteica , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Azufre/metabolismo
19.
J Biol Chem ; 287(37): 31406-13, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22782893

RESUMEN

The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico/química , Proteínas Hierro-Azufre/química , Complejos Multiproteicos/química , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
20.
J Biol Chem ; 286(50): 43447-53, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21998307

RESUMEN

Hsp12 (heat shock protein 12) belongs to the small heat shock protein family, partially characterized as a stress response, stationary phase entry, late embryonic abundant-like protein located at the plasma membrane to protect membrane from desiccation. Here, we report the structural characterization of Hsp12 by NMR and biophysical techniques. The protein was labeled uniformly with nitrogen-15 and carbon-13 so that its conformation could be determined in detail both in aqueous solution and in two membrane-mimetic environments, SDS and dodecylphosphocholine (DPC) micelles. Secondary structural elements determined from assigned chemical shifts indicated that Hsp12 is dynamically disordered in aqueous solution, whereas it gains four helical stretches in the presence of SDS micelles and a single helix in presence of DPC. These conclusions were reinforced by circular dichroism spectra of the protein in all three environments. The lack of long range interactions in NOESY spectra indicated that the helices present in SDS micelles do not pack together. R(1) and R(2), relaxation and heteronuclear NOE measurements showed that the protein is disordered in aqueous solution but becomes more ordered in presence of detergent micelles. NMR spectra collected in presence of paramagnetic spin relaxation agents (5DSA, 16DSA, and Gd(DTPA-BMA)) indicated that the amphipathic α-helices of Hsp12 in SDS micelles lie on the membrane surface. These observations are in agreement with studies suggesting that Hsp12 functions to protect the membrane from desiccation.


Asunto(s)
Proteínas de Choque Térmico/química , Micelas , Proteínas de Saccharomyces cerevisiae/química , Espectroscopía de Resonancia Magnética , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estructura Secundaria de Proteína , Dodecil Sulfato de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...